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This paper describes a problem-solving framework In which aspects of mathematical decl- 
sion theory are incorporated into symbolic problem-solving techmques currently predomi- 
nant in artificial intelligence. The utility function of declslon theory IS used to reveal 
. tradeoffs among competing strategies for achieving various goals, taking into account such 

factors as reliability, the complexity of steps in the strategy, and the value of the goal. The 
utility funchon on strategies can therefore be used as a guide when searching for good 
strategies. It is also used to formulate solutions to the problems of how to acquire a world 
model, how much planning effort is worthwhile, and whether verification tests should be 
performed. These techniques are illustrated by application to the classic monkey and 
bananas problem. 

I .  INTRODUCTION 

Mathematical decision theory is concerned with decision making under condi- 
tions of uncertainty. Because this is also a major concern of artificial intelli- 
gence, one would expect considerable interaction between the disciplines. Al- 
though there has been some (primarily in the study of search algorithms, see 
Hart, Nilsson, & Raphael, 1968), the two fields have presented basically com- 
peting paradigms. It is the purpose of this and related papers (Yakimovsky & 
Feldman, 1974) to show how artificial intelligence problems can be attacked by 
methods derived from decision theory. More generally, we are concerned with 
how to combine numeric and symbolic reasoning. 

The central idea of mathematical decision theory is that a numerical utility 
function can be used to evaluate decisions (see Chernoff & Moses, 1959, or 
Raiffa, 1970, for introductions to decision theory). A single numerical value is 
used to summarize the advantages of a set of actions. A typical utility function 
would be the profits realized from a particular investment outcome. Although it 
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might seem that the use of a single number could preclude the choice of an 
optimal strategy in some cases, the central theorem of decision theory shows 
essentially that this cannot happen. The presentation of this theorem is beyond 
the scope of this paper (see deGroot, 1970), for an elementary presentation), but 
the result can be stated simply: if various outcomes have known utilities and 
known probabilities of occurrence, then any acceptable (admissible) strategy is 
equivalent to one which maximizes expected utility. Different strategies arise 
from different assumptions about probability and utility functions. Both kinds of 
functions are subjective models of the behavior of the problem domain and may 
be quite complex. 

The first, and perhaps the best, argument for a numerical utility function is that 
the choice between alternative courses of action is often intrinsically numerical. 
One chooses the cheapest, or fastest, or strongest alternative. We have found that 
many problems in robot problem solving are virtually inexpressible in rionnumer- 
ical terms. 

Another main use of a numerical utility function is in "comparing the incom- 
parable." If flying is faster and safer than driving, but more expensive and 
subject to delay, how can we choose which to do? What change in price would 
cause us to choose otherwise? The expected utilities of the alternative decisions 
answer these questions. By contrast, a heuristic program capable of comparing 
differing strategies must have rules covering all possible combinations of goals 
and circumstances, and the addition of new alternatives may require significant 
reprogramming. In a decision-theory formulation, much of the complexity in the 
tradeoff comparisons is embodied in the structure of the utility function. A vast 
controversy-filled literature testifies to the intricacies of utility and probability 
assessments that attempt to model tradeoffs made by humans (Tversky & 
Kahneman, 1974). Our objective is considerably simpler: the design of the utility 
function need address values only within a particular problem. 

Our first major application of decision-theoretic methods in robotics attacked 
the problem of image segmentation (Yakimovsky & Feldman, 1974). The prob- 
lem of segmentation, breaking a complex image into sections, is a central one in 
machine perception; the analogous problem arises in the analysis of speech 
(Woods, 1974) and in other complex problems. The approach applies Bayesian 
decision theory and problem-dependent information (semantics) to determine 
an acceptable segmentation of the image. This program was quite successful 
and the general ideas are being widely adopted (Garvey Tenedbaum, 1974; 
Tenenbaum, 1973). 

However, the image segmentation effort did not explore all advantages of 
decision-theoretic formulations. Image analysis has been a peripheral problem in 
A1 and has often been attacked by partially numerical techniques. We believe 
that many problems in A1 can be clarified by abandoning a strictly "symbolic 
data processing" viewpoint and by employing decision-theoretic techniques. 

The central problem addressed in this paper is that of planning and acting. 
This is a core issue in A1 and becomes increasingly important as we begin to 



apply A1 techniques to real problems. The vehicle used for discussion in this 
' paper is the classic "Monkey and Bananas" problem. It is a simple, well-known 
problem which can be extended naturally to include many of the basic issues we 
wish to address. These issues include planning under uncertainty, assessing costs 
and risks, error recovery, the value of information, and the cost of planning. 

Because the monkey's world may seem rather artificial, the reader may prefer 
a more practical example. The issues of uncertainty, cost, risk, and information 
gathering seem easy to appreciate in the case of the "wheelless student," the 
real-life problem of buying a used automobile. A typical procedure is first to read 
newspaper advertisements and bulletin boards to assess the situation generally. 
Then, at relatively low cost, one can telephone various purveyors of cars and 
inquire about them. At some point, one must actually go to the effort of seeing 
and driving certain of these. There are professional diagnostic services which can 
be employed at considerable cost to further test the car. In each of these steps, 
one must decide when to stop that stage and go on to the next one. One does not, 
of course, proceed in strict order; there will normally be alternatives at several 
different levels of investigation. 

Notice that the "plan" itself is trivial: read, telephone, look, drive, profes- 
sionally test, and buy. It is the application of this plan to the world situation 
which is difficult. We believe that much intelligent activity is characterized by 
complex applications of simple plans, and this belief has led us to concentrate on 
the closely related questions of plan elaboration and execution. 

The following four sections illustrate the applications of decision theory to A1 
with the monkey and bananas example. The first section describes the use of 
simple decision-theoretic techniques applied to symbolic problem solving. The 
subsequent sections illustrate a broader application of techniques, particularly for 
allocation of resources to planning and acting. The indented paragraphs describe 
generalizations of ideas in the example which may be ignored on first reading. 

2. DECISION THEORY IN SYMBOLIC PROBLEM SOLVING 

Decision theory helps a symbolic problem-solver search for the best plan that 
achieves a given goal. A utility function on plans can govern a search strategy 
that explores plans of high utility; the search terminates by announcing the plan 
of highest utility. 

We shall illustrate how symbolic problem solving and decision analysis can be 
combined with the classical example: A hungry monkey is in a room in which a 
bunch of bananas hangsfiom the ceiling. The monkey cannot reach the bananas. 
There is, however, a movable box in the room; if the box is under the bananas 
and the monkey stands on the box he can reach the bananas and eat. The goal for 
a symbolic problem solver is to find a plan that will feed the monkey. 

A typical problem solver is given a symbolic model of the problem and 
searches for a combination of "operators" that achieves a given goal. A possible 
symbolic model, specified in the style of a modem A1 language, records informa- 



DECISION THEORY AND ARTIFICIAL INTELLIGENCE 161 

tion about the position of objects with an "AT" assertion that associates an 
object and its Cartesian coordinate position. Additional assertions declare boxes 
to be climbable and pushable and bananas to be edible. An initial set of assertions 
might be: 

(AT MONKEY 9 9 0) 
(AT BANANAS 0 0 5) 
(AT BOX 2 2 0) 
(HEIGHT BOX 5) 
(CLIMBABLE BOX) 
(PUSHABLE BOX) 
(EDIBLE BANANAS) 

The operators are specified below. If all assertions in the list of preconditions are 
in the assertion data base, then the operator can be applied. Application of an 
operator causes assertions in the delete list to be deleted from the data base, and 
those in the add list to be added. (The functions X, Y, and Z refer to the 
coordinate entries in the AT predicate. The symbol $ will match any value in the 
corresponding position in the assertion.) 

WALKTO(a) 
Preconditions: 

* Delete list: 
Add list: 

PUSHTO((w$) 
Preconditions: 

Delete list: 

Add list: 

CLIMB@) 
Preconditions: 

Delete list: 
Add list: 

CONSUME(a) 
Preconditions: 

Delete list: 
Add list: 

(AT MONKEY $ $ 0 )  
(AT MONKEY $ $ 0 )  
(AT MONKEY X(a) Y(a) 0) 

(AT MONKEY X(a) Y(a) 0) 
(PUSHABLE a )  
( A T a  $ $ 0 )  
(AT MONKEY $ $ 0 )  
( A T a  $ $ 0 )  
(AT MONKEY X(P) Y(P) 0) 
(AT ff X(P) Y(P) 0) 

(CLIMBABLE a )  
(AT MONKEY X(a) Y(a) 0) 
(AT MONKEY $ $ 0 )  
(AT MONKEY X(a) Y(a) HEIGHT@)) 

(EDIBLE a )  
(AT MONKEY X(a) Y(a) Z(a)) 
(EDIBLE a )  
(FED) 

The problem solver, given the goal (FED), would generate the plan: 

WALKTO(B0X) 
PUSHTO(BOX,B ANANAS) 
CLIMBPOX) 
CONSUME(BANANAS) 
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In a robotics experiment, the original assertions and this sequence of operators 
can be used as a set of commands to software and hardware subsystems that 
would cause a robot to simulate the actions of the monkey. 

If the problem statement and the corresponding symbolic information given to 
the problem solver were expanded to include multiple tools, multiple sources of 
food, or multiple goals, the problem solver could generate other plans as well. If 
the initial assertions model several boxes, a plan for each box can be generated. 
However, if the symbolic model becomes at all large and intricate, the com- 
binatorial explosion would overwhelm any present problem solver. 

Computing the Utility of a Plan 
The utility of any one of the WALKTO, PUSHTO, CLIMB, CONSUME 

plans is derived from a utility model that accompanies the symbolic.mode1. It is a 
measure of the value of executing each of the steps in the plan and thus achieving 
the goal. We shall assume for now that this utility can be expressed as a sum of 
contributions from individual steps and a contribution representing the value of 
achieving the goal (Note: This eludes several important considerations such as 
risk which will be treated later.) 

For each goal, we assign a function that evaluates the utility of achieving the 
goal. In our example, we shall assign U ,  = 200 to the goal of eating, that is, a 
state in which the monkey is fed. Goals of less value to the monkey are assigned 
correspondingly smaller utilities. For later reference, we shall assume that the 
next most desirable goal is "don't bother trying to eat," which has utility Udh. 

The utility associated with executing each step of the plan is often called the 
"cost" of the step. A robotics experiment that simulates each operator with a 
collection of processes, including computation and control of a robot vehicle or 
manipulator, might use cost assignments that express the consumption of re- 
sources required to accomplish each step. Table 1 specifies an assignment of 
negative-valued cost.functions C that reflect the expenditure of resources re- 
quired for each step. 

WALKTO@). The monkey walks from its present location (x,,y,) to 
(X(a),Y(a)). The cost is Cw = - 1 * distance((x,,y,),(X(a),Y(a))). 

CLIMB@). The monkey climbs the object a. Cb = -20. 

CONSUME(a). The monkey consumes the food a. C, = -5 .  

Using this model, the total utility of the symbolic plan WALKTO, PUSHTO, 
CLIMB, CONSUME is: UtOk,, = C ,  + C ,  + Cb + C, + U,. The utility of the 
next best plan is W b .  
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Monkey 

FIG. 1 Map showing thelocation of the monkey, the bananas and four boxes. The axes indicate 
an (x ,y )  coordinate system. 

Comparing Alternative Plans 
The plan with greatest utility can be selected for execution: it is the "best" of 

the plans generated by the symbolic problem solver, as evaluated by the utility 
model. To illustrate the power of comparing plans, consider generating plans 
using each of the four boxes shown in the "map" of Fig. 1. Table 1 shows the 
total utilities of the WALKTO, PUSHTO, CLIMB, CONSUME plans using 
the different boxes. The plan to use box B has the greatest utility and is therefore 
selected as the best plan. This simple utility model adds considerable capability 
to the problem solver. The location of the boxes and the cost functions determine 
which box is selected as the best one to use. For example, if C, = C,, box C will 
be preferred rather than B. If the initial position of the monkey changes, different 
boxes may be preferred. (Figure 2a shows a map of regions in which the monkey 
might start out, together with the preferred box in each region (the map is made 
assuming C ,  = - 2*distance) .) 

TABLE 1 
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Use B. 

use c 

. I .  , , . .  I ' . . . ;  - , 

FIG. 2 (a) Regions of box preference by initial monkey position. (b) Region in which a box 
preferred to B must lie. 

The cost functions also provide answers to a number of questions. that an 
intelligent strategist must pdse. For example, when should one try to find a b6x 
of higher utility than any presently located, and where should one search? (Fig- 
ure 2b shows the region in which a box peferred- to B would have to lie.) 

Another important class of strategic questions concerns what decision theorists 
call "sensitivity analysis": how much confidence can be placed in the identifica- 
tion of the best plan? Is it substantially better than the next best, or do the utilities 
show that the planner is nearly indifferent to the choice? Do slight inaccuracies in 
the map or model cause a substantial change in the choice of best strategy? We 
shall later return to these important questions. 

Coping with Uncertainty 
Execution of a plan can go awry and produce outcomes considerably different 

from the desired goal. Clearly the reliability of a plan must be incorporated into 
the calculation of its utility. Decision theory shows how to weight the utility of 
an outcome with its probability of occurrence and thus to calculate a total utility 
that expresses the consequences of possible failures. 

Let us augment the monkey-and-bananas problem by introducing a simple 
kind of failure: There are two kinds of boxes in the room: wooden and 
cardboard. Cardboard boxes will not support the monkey; wooden ones will. 

When the plan outline is applied to a box of unknown type, either.the box is 
wood and the monkey succeeds in eating, or it is cardboard and he fails (see Fig. 
3). In the absence of more precise information about the box to which the plan is 
applied, we shall use a single probability po to express the likelihood that the box 
is wooden. In addition, we shall assign a utility to the failure outcome. A simple 
assignment is Udb, corresponding to abandoning the quest for food. However, 
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Ut '87 

PushTo 

Climb 
C=-20 

wood (po z.8) 

Consume 
C=-5 

u, -200 

FIG. 3 A decision tree for a plan in which CLIMB may fail. 

failure-recovery plans of higher utility may exist: a plan to clear away the de- 
stroyed cardboard box and to try using another box may have a higher utility than 
Udb. Techniques for devising failure recoveries will be more fully developed 
below; we shall temporarily assume the utility of the failure outcome to be Udb. 

The utility of the plan is calculated as the mathematical expectation of the 
utilities of the individual outcomes, that is: 

Utota~ = P ~ U I  
where Ui is the total utility of a particular path in the "decision tree," and pi is 
the probability of taking the path (2 p, = 1). For Fig. 3, the total utility Utot,, is 

' p o ( ~ w  + CD + Cb f C c  + Ue) + (1 - po)(Cw + CP +Cb + U&)* 
This technique allows the planner to trade off cost and reliability; classical A1 

problem solvers have no means of expressing these tradwffs. For example, if we 
- use the costs of Table 1 and assume an identical po for all boxes, no change 

occurs in the selection of the best plan. However, if the probabilities differ for 
various boxes, a reliable plan may be preferred to a less reliable one. For 
.example, if p,, is the probability that box C is wood, pob that of box B, and po,  
> pob + .11, the expected utility of using box C will be greater than that of using 
box B. 

The expected utility is a numerical measure of the merits of the strategy 
expressed by the plan. It does not predict that executing the plan will have an 
outcome of comparable utility, but only predicts the average utility of outcomes 
of many executions. Thus, if we use the expected utility as a measure when 
searching for good plans, we do not guarantee good outcomes, only good 
strategies. (This notion is .central to classical decision theory, see deGroot, 
1970.) 

i 
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Finding Good Plans . " 

Because the utility of a plan can be used to compare the merits of competing 
plans, it can be used to guide a search for good plans. The basic idea is to search 
by expanding paths of greatest expected utility. A number of algorithms have 
been devised that can use numerical measures to guide such a search (see surveys 
in Lawler & Wood, 1966, and Nilsson, 1971). Thus, augmenting the symbolic 
model with a numerical utility model widens the range of applicable search 
techniques. 

Using numerical measures to guide search is not new to AI. Many game- 
playing programs employ a numerical score to represent the desirability of a 
board position and to guide a search. In fact, a game-playing program that uses a 
plausible move generator and a numerical evaluation of progress toward a win is 
a simple example of a combination of symbolic and (ad hoc) utility models in 
problem solving. Robotics problem-solving programs (e.g., STRIPS, see Fikes 
& Nilsson, 1971)' have also used simple numerical measures, such as the 
number of operators in a plan, as a search guide. 

Searching can be guided in several ways; we shall illustrate "progressive 
deepening" and "pruning" as examples. The A* algorithm (Nilsson, 1971; 
Pohl, 1973) is typical of a progressive-deepening approach: a nonterminal node, 
N, of a search tree is expanded if it lies on the most promising path. The measure 
of promise is an estimate of the utility of the complete plan, computed as the sum 
of two terms: g, a measure of the "costs" ascribed to the nodes already included 
in the path (i.e., the total cost of the steps from the root node to N), and h, an 
upper bound estimate of the utility of a path from N to the goal. (Note: All 
"costs" are negative. Thus an upper bound on a set of costs is one for which 
resource expenditure is least.) These terms for the monkey and bananas example 
might be: 

g(node) = Z Ci from root to node 
h(node) = (upper-bound estimate of costs from node to the goal) + U, 

The calculation of g requires calculating the contribution to the utility of the steps 
of the partially complete plan. It is for this reason that we have formulated our 
utility model as a sum of terms attributable to individual steps of the plan. The 
estimate used for h can be based on a simple "state-difference" approach, for 
example, if, at node N, the monkey is not located at the bananas, then an upper 
bound on h is the cost of moving .the monkey to the bananas. 

Progressive deepening uses a running estimate of the path utility to guide 
application of further planning effort. One advantage of this technique is that it 
will automatically attenuate the processing of plans that loop: such plans are 
abandoned because, as steps are added to the plan, g decreases continually 
without an offsetting increase in h. 

'Use of A* was revealed in a private communication. 
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"Pruning" is characteristic of several kinds of search algorithms that avoid 
exploring portions of the tree because the optimal plan can be shown to lie 
elsewhere. Many algorithms in use in operations research, known 'generically as 
"branch and bound'' algorithms, have this property. The basic idea is to ignore 
paths that have an upper bound on their utility that is less than the utility achiev- 
able by some other path. A similar technique, for minimax trees, is called 
"alpha-beta," which has been extended for use with decision trees (Nilsson, 
197 1; Pauker & Kassim, 1975). 

The key information that guides pruning is the bounds information: the tighter 
the bounds, the more pruning necessary. Bounding the utility of a plan such as 
that of Fig. 3 requires bounding the utility of the part of the plan that is incom- 
plete, the failure path. Bounding the failure path is equivalent to bounding the 
utility of the possible recovery strategies. One way to do this is as follows: 

Lower bound: Don't bother with the current goal, and assign utility Udb to the 
failure. Thus the lower bound is U, = Cw +C,+Cb+po(C,+ Ue)+ 
(l-~O)Udb. 

Upper bound: Assume that the failure caused no damage, and that there is an 
alternative plan as good as the present one. (Note: Given that a good plan 
fails, we do not have to assunie that there exists a better one, because that 
will be covered by cases involving other boxes.) 

Uu = Cw+Cp+ Cb+po(Cc+ U,) + (I-p,)Uu 
Uu = (Cw+Cp+ Cb)/po + Cc+ Ue 

If we perform these calculations for all boxes, as in Table 1, we obtain Table 2. 
This bounding scheme shows clearly that utilities of plans involving boxes A, C, 
or D cannot exceed even the lower bound on using box B. Thus portions of the 
tree that call for boxes A, C, and D to be used to reach the bananas are pruned. 

The numerical utility model thus furnishes information that is useful in guiding 
search. This information, whether encoded in cost functions or in bounding 
schemes, can easily involve "domain-dependent" information, as exemplified 
by'our assignment of a function of distance to the cost of walking. The symbolic 
model also constrains search: the symbolic preconditions are used to avoid 
searching foolish plans, for example, ones that reach for the bananas when the 
monkey is not nearby. This technique can be implemented in the dew A1 lan- 

TABLE 2 

Box UI UU 
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guages (see survey .in ~ o b r o w  & ~ a ~ h a e l ,  1974) by instantiating each subgoal 
pursuit as a separate process and including. bounds estimates and costs when 
proposing new subgoals. A branch-and-bound algorithm, such as A*, can then 
schedule the processes (subgoals), always executing the most promising subgoal. 
Such dynamic allocation of effort to problem-solving processes motivated the 
design of the SAIL multiple process structure (Feldman, 1972). 

3. IMPROVING THE PLAN 

In this section, we will focus on improvements that can be made to a plan piior 
to its execution. A plan outline can often be altered to yield a greater expected 
utility by making detailed, often local, improvements to the plan. The measure of 
improvement in this plan elaboration process is the increasein expetted utility 
resulting from filling in details. 

Climb 
C.-20 

Po =.8 I-po ..2 

U, = 9 6  

I [96;96;104] 

WalkTo(B) 
C=-13 

I 
PushTo 

C=-36 

Climb 
C=-20 

po =.8 I -p  =.2 

Consume 

Consume 
C=-5 

I 
ue =200 

FIG. 4 Elaboration to increase the utility of  failure in CLIMB. The numbers in brackets are 
explained in the text. . 

I 

Clear 
C=-20 

WalkTo(C) 
C=-6 

[66;66;105]' 



FIG. 5 Inserting costless tests for wooden boxes. 

A plan can be improved by developing plans to recover ffom failures in the 
original outline. The failure in Fig. 3 can be elaborated with steps to clear away 
the mess, choose an alternative box, and try to use it to reach the bananas. Such 
an elaboration is shown in Fig. 4; the expected utility of the plan has risen from 
87 to 96 as a result of the elaboration. The increase occurs because the plan to 
deal with the failure of box B (i.e., to try again with box C) has a higher utility 
than that of giving up (45 vs. 0). This process can be camed on indefinitely, but 
if the probability of failure is fairly low, the cost of additional planning may 
exceed the slight improvement in expected utility. (Generating plans for recover- 
ing from failures is similar to the generation of the original plan: a symbolic 
problem solver can provide plan outlines; the alternative recovery strategies are 
compared with utility measurements.) 

Elaborating failures tightens the bounds on a plan. Figure 4 has a set of bounds 
shown in brackets as a triple: lower bound, expected value, and upper bound. 
Bounds are assessed from bottom to top; the triple with a prime symbol is 
calculated using the U, formula, then the effects are propagated up through the 
-tree. This process yields a rather tight bound on the utility of using box B (cf. 
Table 2). 

Another kind of plan improvement can be achieved by introducing steps in the 
plan to gather information, and thereby reduce the uncertainty in the outcome. A 
simple example is shown in Fig. 5: a perfect and costless test determines whether 
each box is wooden. If the test announces that a box is wooden, which happens 
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with probability p,, then the plan to use that box is guaranteed to be successful. 
If the test announces that a box is cardboard, the next best plan is tried, and so 
forth. Adding these tests causes UtOt,, to rise to 121. 

A more realistic model of such information gathering incorporates the expen- 
diture of resources required to perform the test and for .the possibility that the test 
gives an incorrect answer. We shall define .two such tests thatcan be used to 
elaborate the monkey-and-bananas plan: 

TEST-FAR: A visual test measures whether a box is wooden. It does not 
require that the monkey be located near the box. It has a cost Ctf .  The 
answer is characterized by two conditional probabilities pi, and pfc. 

pfw = Pr{test announces "wood" I box is wooden) 
(1 -p,, = Pr{test announces "cardboard" ( box is wooden) ) 

pfc = Pr {test announces "wood" 1 box is cardboard) 
(1 -pfc = Pr{test announces "cardboard" I box is cardboard) ) 

If the test always yields correct answers, pfw = 1 and pfc = 0. 

TEST-NEAR: This test is analogous to TEST-FAR, but the monkey must be 
at the same location as the box being tested. This test might involve 
"thumping" the box. Cost Ctn. The behavior is characterized by: 

p,, = Pr{test announces "wood" 1 box is wooden) 

p,, = Pr{test announces "wood" I box is cardboard) 
If the test always yields correct answers p,  = 1 and p,, = 0. 

Adding these tests to the plan outline produces the four strategies shown in 
Fig. 6. In order to calculate the expected utilities of these plans, and thereby 
choose the best one, we must describe the consequences of performing a test. We 
shall use a simple Bayesian model: a test causes a change in the probability that 
the tested box is wooden, according to Bayes rule: 

Pr{box is wood I TEST-FAR announces "wood") 

- - pfw Pr(box is wood) 
ptw Pr{box is wood) + pfc (1 -Pr{box is wood)) 

Pr{box is wood I TEST-FAR announces "cardboard") 

- - (1 -pfw) Pr{box is wood) 
(1 -piw) Pr{box is wood) + (1 -pk) (1 -Pr{box is wood)) 

In these equations, ~r{box is wood) is the prior probability that the box is 
wood, and ~r{box is woodl TEST-FAR} is the posterior probability that it is 
wood. Analogous relations hold for TEST-NEAR. 
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I I TestNear I 

Consume 

ue Consume 
A a  A  B 

I I 
TestFar TestFar 

cardboard cardboard 

Walkto F 1  Walkto 1 
I I 

Pushto TestNear 
I 

wood cardboard 
Climb 

Pushlo F2 
I 

Climb 
I 
Ue 

B a  
B B 

I 

FIG. 6 Four strategies using TEST-NEAR and TEST-FAR. 

We also need to calculate the probabilities of taking each of the two paths that 

emanate from the TEST operation: 

Pr{test announces "wood") = pf, Pr{box is wood) + pf, (1 -Pr{box is wood)) 

Pr{test announces "cardboard") = 1 - Pr{test announces "wood") 

As an example of these calculations, we shall evaluate the expected utility of 
the Bor strategy of Fig. 6 applied to box B,  with the prior probability of finding a 
wooden box, p,, set to 0.8, the performance of TEST-FAR characterized by Ce 
= -20, pf, = 0.9, and prc = 0.1, and the failure utilities UF1 and UF2 set to 0. 
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For each of the three paths through the tree, we must calculate the probability the 
path is taken and the utility of the path: 

Path, ' ut Path probability 

TEST-FAR, F, -20 Pr{test announces "cardboard") 
= l-(Pfwpo + ~ d l - p o ) )  = .26 

TEST-FAR, WALKTO, -89 Pr{box is cardboard I test announces "wood")* 
PUSHTO, CLIMB, Fg ' Pr{test announces "wood") 

= [I -@fw~o)l@fw~o + pfd1 -po))l* .74 = .02 

TEST-FAR, WALKTO, 106 Pr{box is woodl test announces "wood!') * 
PUSHTO, CLIMB, Pr{test anounces "wood") 

CONSUME, U, = [@rw~dl(prwpo + P~CU -po))l * .74 = .72 

The expected utility is EU = Z p i U i  = 69. Similar calculations for all four 
straiegies, applied to box B,  are recorded in Table 3. For the given set of costs, 
utilities, and probabilities, strategy A@ is selected. The strategy can be improved 
still further by elaboration to cope with the failures F, and Fa, as described 
above. Using both methods, a strategy with expected utility 105 turns out to be 
optimal. 

The model of testing reveals tradeoffs among various information-gathering 
strategies as differences in utility. If the insertion of tests in a plan causes the 
expected utility of a plan to rise, the test is providing information that helps 
reduce the uncertainty of the outcome. Decision theory calls the increase in 
utility the "value of information." 

If different strategies have nearly identical utilities, as do Act and A@ in Table 
3, the planner might announce indifference between the strategies, and perhaps 
use other methods to decide which one to pursue. Such small differences may be 
insignificant whei uncertainties in the probability or utility models are taken into 

TABLE 3 

Sh-ategy E U 

Aa! 87 (cf. Fig. 3) 
A@ 88 
B a  69 
BR 63 

C, = - 1 * distance C,, = -20 
C, = - 10 * distance Ctn = - 10 
c b  = -20 pr\v = .9 
Co = -5 pro = . 1 , 
(I, = 200 Pnw = 1 
% = O  Pno = O  

po = .8 
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account. Although we may in principle reduce these errors by refining the model, 
we shall always be faced with insignificantly small differences. 

Elaborations cause the search space to grow quite large because of the various 
choices of inclusion and exclusion of tests, the increased number of failures that 
require recovery strategies, etc. The search would be wholly impractical without 
a guide such as the branch-and-bound algorithm. We shall address below other 
methods of combating the "combinatorial explosion'' during elaboration. 

4. WORLD MODEL ACQUISITION 

The planning activities described in previous sections have assumed that the 
planner has a complete model of the world. Because acquiring such a'"wor1d 

, model" and locating all the boxes is a sizable task, an efficient strategy for 
feeding the monkey must make efficient allocation of resources to build the 
model. 

A decision-theoretic model of the acquisition process can express the cost and 
reliability of an acquisition operator and the utility and probability of locating an 
object in the world. Once again, the utility measure can be used to search for an 
efficient strategy. A key concept in this approach is that the expected utility of'a 
plan that uses an object, as computed in Section 2, can be used to estimate the 
value of locating the object. 

The vision strategy must decide where to look. For our example, we shall use '. 
a grid to divide the world into regions and use a utility calculation to decide 
which region should be scrutinized. We shall use a simple acquisition operator 
LOOKAT: 

LOOKAT(x,y). Examine the unit square at (x,y) with a vision system to 
determine if a box lies in the square. The cost of the operator is C,,,. The 
outcome of the operator could be characterized by the two probabilities: 

plb = Pr{LOOKAT(x,y) announces "box"lbox at (x,y)) 

Pin = Pr{LOOKAT(x,y) announces "box" I no box at (x,y)) 
In the remainder of the example, we shall assume plb = 1 and p,, = 0. 

In addition, we shall require a priori estimates of the probability that a box lies 
in a square, ~r{box at (x ,~) ) .  The utility of looking at a square is thus: 

where Ubox,x,u is the utility of using a box found at square (x,y),  which is 
estimated by evaluating the utility of a plan outline (e.g., Fig. 3) without elabora- 
tion. The UIOok,,,, values are calculated for all squares, and the square with the 
largest value is chosen as the best place to look for a box. 
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The vision plan can also be elaborated. If the LOOKAT operator fails to 
locate a box, we might apply the LOOKAT operator to another square, and 
so forth (Fig. 7). This is just like coping with failure in CLIMB-we chose 
an alternative. Calculating the order in which to look at squares in this case 
is straightforward: the square with the largest value of Ubox,s,U + CS,# 1 
Pr{box at (x.y)) is examined first, that with second largest next, etc. 

Analogous to adding TEST-NEAR and TEST-FAR operators might be 
' 

adding CHANGE-LENS or TURN-ON-MORE-LIGHTS operations to 
improve the probability of success of the vision operator. A more subtle 
elaboration might include WALKTO operators to position the monkey for 
better viewing of a particular region; this would of course influence the 
values of Ubox,z,g by changing the initial position of the monkey. 

The utility of an acquisition plan is an attempt to measure the benefit of 
augmenting the information in the world model. Finding objects may permit 
using plans of higher utility; or it may show that a navigational path is 
blocked. Absence of objects may be useful when planning a collision-free 
route. Hence the utility that is assigned to a particular outcome of a vision 
operator is the utility of the information for the current set of plans. The 
utility of acquisition is further increased because new world-model informa- 
tion may give rise to alternative plans not previously considered. 

The results of the LOOKAT operation change information in the world 
model. If a box is located, it is recorded in the model. In all cases, the subjective 
probability that a box is located in the scmtinized squ&e, ~r{box at ( x ~ ) } ,  is 
modified. This is analogous to the treatment of TEST-NEAR and TEST-FAR: 
Bayes' rule is used to update ~r{box at (x,~)} just as it is used to update ~r{box 
is wood} as a result ofthe TESTS. This means that once a square is lodked at and 
found not to contain a box, it will probably not be tested again. 

FIG. 7 Correcting failures in LOOKAT by examining more squares. 
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The a priori values for the ~r{box at ( xJ ) }  are supplied by a function that 
can contain considerable information about the world. If boxes are more 
common in the garage than in the house, this can be expressed in the 
probability assessments. 

The results of looking at a square may have implications other than the 
success or failure in locating a box. An object'needed to execute a compet- 
ing plan may be located, thereby'causing the utility of such a plan to rise. Or 

- the information detected by LOOKAT may alter probabilities that boxes 
-exist in surrounding squares (e.g., finding a fireplace may cause one to 
suspect that no boxes lie nearby; if'piles of boxes are common, finding a box 
may increase chances of. finding others nearby).' 

The previous discussion suggests that we look for only one box, and then 
use it. However, once, a single box has been located, we can consider 
alternatives: use the one that is found or look for another one. If a second 
box is located, it may have higher utility than the first, or may improve the 
plan to use the first box because the second is available as backup. 

Because acquisition operators change the world model, the results can cause 
widespread changes to the utilities of current plans. We could, in principle, 
model an acquisition operator with a large number.of outcomes. and generate 
plans for each contingency although. a large number of eventually useless plans 

' 

would result. A mechanism to control the amount of planning ahead and to 
permit periodic reevaluation of plans is clearly needed. The next section ad- 
dresses this topic. 

'5. THE TRINITY: LOOK, THINK, ACT 

At some point, the planning operations sketched in the previous sections must 
be halted and the best plan actually executed. In fact, planning must be severely 
limited, lest planning resources be wasted in any of numerous ways, such as 
generating detailed plans for paths that are never encountered or planning without 
adequate world model information or pursuing complicated elaborations that 
increase plan utilities only slightly. However, if planning is curtailed, we must 
be able to resume planning later on. 

What is needed is an efficient's~hedulin~ of planning, looking, and acting. 
The. scheduler decides in some way which activity is most beneficial at the 
moment, grants it a resource quantum, and then repeats. A natural quantum for 
looking and -acting is execution of one of the "operators" such as LOOKAT or 
WALKTO. A natural quantum for planning might be one iteration of a branch- 
and-bound algorithm, or the addition of one elaboration to a plan. 

The decision to plan or to execute can be made with a utility measure. We 
compare the utility of looking (i.e., executing a step in the best acquisition plan), 
acting (i.e., executing a step in the best action plan), or additional planning (i.e., 
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elaborating existing plans with branch-and-bound as a guide, or developing more I 

symbolic plans). ~nforhmately, specifying a utility function that reflects the 
benefits of futureplanning is quite difficult. 1 

Decision theorists have addressed a problem called "cost of analysis," 
which is loosely related to the notian of planning cost used here (Matheson, 
1968). In a practical analysis, the cost of building a model and assessing 
probability and utility values is often large enough to try to estimate the 
value of various alteniative analyses. This calculation is often modeled as a 
set of initial tests of varying cost that give different sorts of information 
about prevailing probability distributions. The tests and their costs corres- 
pond to the various analysis choices (Matheson, 1968). 

In our case, planning is the application of the model to a particular 
situation, which may involve substantial symbolic reasoning, tree expan- 
sion, etc. We desire simply to discount the value of a partial plan by the cost 
of the processing required to generate the details needed for execution. 

A simple ad hoc approach can be used to limit planning activities, that is, to 
specify a stopping criterion. The difference between the upper bound and ex- 
pected utilities of a plan for vision or action is a limit on the improvement in the 
plan that infinite planning would achieve. We have the choice between executing 
the plan as it stands, and receiving (on the average) the expected utility, and 
spending some effort planning (say, the cost is CPlan) and receiving, at most, the 
upper bound on the plan. Comparing the utilities of these two alternatives, we 
have: 

If Uplan > Uexecute, we choose to plan. This constrains the planning effort: 
Cplan 3 Uplan expectation - Uupper bound Thus the additional planning effort is 
limited by the difference between the upper bound and the expected utility. 
Obviously this is a crude approximation and could be refined. 

This approach essentially compares the risk of the current plan (as esti- 
mated by tht difference between the upper bound and the expectation) with 
the cost of further planning. It does not attempt to predict the actual value of 
planning, but rather measures the cost and maximum value of planning 
steps. It would certainly be better to use the expected value of the benefits of 
planning if this quantity could be computed. 

The main loop of the system until such a stopping criterion is reached, 
and then either looks or acts, whichever has the greater utility. Then the process 
repeats. The outcomes of looking or acting are, of course, recorded and cause 
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adjustments in the utilities of various available plans. This mixing of planning 
and acting is a uniform framework for providing "monitoring" and "verifica- 
tion" functions in robotics systems (Grape, 1973; Munson, 1971). 

6. BEYOND THE EXAMPLE 

The monkey-and-bananas example used in the preceding four sections fails to 
bring out some of the potential uses of decision theory. This section expands on 
the techniques illustrated in the example. 

The Model 

The design of the abstracted model of the world, comprising the symbolic 
operators, the outcomes of operators, and the probability and utility assessments, 
is a key to the performance of the system. On the one hand, we contend that a 
repertoire of symbolic operators alone, as used in many robotics systems, gener- 
ates plans that are blatantly wasteful of resources. The augmented operators 
described in the monkey-and-bananas example, which include cost and reliability 
measures, still fall far short of a complete model of "reality." Yet if the model 
gets too complicated, with many possible elaborations, outcomes, and failures, 

* 
the search may grow unmanageably large. 

Modeling the Operators. The cost/outcome model of system operators 
strives to summarize, in a few functions, the behavior of large, complicated 
subsystems for vision or action. Surely the complexity cannot be captured in a 
few simple functions. On the other hand, an excessively precise model of the 
operation of the subsystems would paralyze planning, turning it into a huge 
simulation. A numerical summary form for expressing performance of subsys- 
tems for vision or action which permits computation on the bounds and estimates 
(expectations) of performance is quite powerful. 

Symbolic Models. The symbolic model gives rise to plan outlines that con- 
strain the remaining search to reasonable plans. In our example, the symbolic 
model will not generate a plan to fly to the box; flying is not reasonable. Thus, 
utility analysis is not applied to arbitrary sequences of operators which violate 
logical conditions (i.e., sequences in which the preconditions for each step are 
not met) or which are not reasonably likely to achieve the given goal. 

Utility Functions. The utility function must capture the tradeoffs the plan- 
ning system is expected to make among reasonable plans. In the monkey-and- 
bananas example, we assign simple cost functions to each operator and a fixed 
utility to being fed. This permits tradeoffs among boxes at different locations to 
be expressed. However, the linear additive property of our utility function (the 
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total utility is a simple sum of independent contributions .of .the operators) cannot 
express certain preferences, especially aversion to risk. 

The utility calculation can be modified to be more comprehensive. A trivial 
extension will express risk aversion: Let the utility of a plan be U = f(wt + U,), 
where the Ci are the costs of thesteps in the plan, Uo is the contribution of the 
outcome, and f is a convex monotonically increasing function (see, for example, 
Raiffa, 1970, for an explanation of how this construction models risk). Further 
extension permits the costs to be interdependent; the utility is then a function of 
all steps in the plan. , -/ 

Because the utility function will be evaluated frequently during the search and 
elaboration processes, the expense of its computation is important. An additive 
property permits the calculation of the utility of a partial path to be local and 
incremental, rather than global. Even if the utility of a traveler, for example, is a 
nonlinear function of total transit time and total fares, running totals of elapsed 
time and spent money can be kept with each node, and the nonlinear utility 
function f can be computed locally. In this case, each operator is characterized by 
a cost vector Ci which expresses the resources required to accomplish the step 
(e.g,, time, energy, money, etc.). Then the total utility of a path can be written 
as gGG + Ud. 

The information that must be associated with each node of the decision tree is 
often local and compact, as this example indicates. A few numbers for utility 
calculations, probability of reaching the node, and a small amount of information 
about state changes caused by the operator at. the node suffice. If the state 
information needed by the symbolic problem solver can also be represented 
compactly, a system will be able to explore many alternatives without excessive 
space requirements. 

Vision and Other Acquisition Operators. Historically, the vision portions of 
a robotics experiment have been the most complex, the most consuming of 
resources, and the most failure-prone of the entire system. Similarly, in a medi- 
cal domain, the cost and risk of gathering information can be quite high. Con- 
sequently, we desire that a planner generate reasonable strategies for acquisition. 
For the purposes of planning a good overall strategy, we must strike a balance 
between a "black box'' model of vision subsystems and a detailed model of their 
performance. 

The importa&point is that a utility function is a natural way to compare 
differing information-gathering strategies, to measure the benefits of improving 
them, and so forth. We do not attempt here to expand the repertoire of basic 
vision techniques, but rather. to provide a framework in which good vision 
strategies can be planned. Within the vision subsystems, additional planning will 
certainly occur, perhaps generating symbolic plans (e.g., acquire the chair by 
first scanning vertically for the chair back, then look for the seat, Garvey & 
Tenenbaum,' 1974), or perhaps using theories of optimal testing (e.g., sequential 
decision theory, see deGroot, 1970; Bolles, 1976). 
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I .  How to decide what to look for. The utilities of competing plans provide a 
measure of which objects are important to the system. These measures can 
propagate to the lowest level of a vision subsystem, appearing as preferences of, 
for example, operators to locate comers or operators to measure texture. The task 
of assimilating low-level vision information and "recognizing" objects may also 
make efficient use of such information. 

2. How to decide when to look. When should vision operators be invoked to 
locate objects needed in a particular plan? The elaboration process can apply 
vision operators both earlier and later, using the expected utility to decide 
whether imprdvements result. -Two simple examples illustrate the need for care- 
ful consideration of when to look: 

A block-stacking task requires two blocks; both are located with vision 
before the manipulator is used. Because one block hides another from the 
camem's viewpoint, locating the second block is extremely costly. If the arm 
had moved the first block away to a stack, the second would then be found 
easily. 

A block-stacking task requires two blocks; one is located, and moved to the 
stack. The attempt to'locate a second block fails completely-there is not 
one available. The goal is unsatisfiable, and could have been abandoned 
before manipulation effort was expended. 

These simple scenarios suggest that it may be advantageous to acquire a' 
complete world model before planning. First, as illustrated in the second exam- 
ple, failure to find enough parts to satisfy a goal causes failure early, which is 
more efficient than detecting the failure later. Second, more information often 
permits cleverer plans: if many blocks have been located, an optimal assignment 
of blocks to locations in the stack can be made (Fahlman, 1974). Third, there are 
often economies in making measurements in parallel. In robotics domains, this 
may mean that the TV camera need be read only once; or it permits planning 
aperture, orientation, and other parameter settings that can apply to groups of 
visual inquiries. (If the strategy is laid out as in Fig. 7, we can compute the 
expected number of LOOKAT operations required, and set the camera viewing 
parameters to look at the spots specified in the first LOOKATs.) In medical 
diagnosis, making parallel measurements may shorten hospital stays or reduce 
the number of costly preparations for tests (Ginsberg, 1969). 

There are also advantages in delaying vision. First, better observation condi- 
tions may exist after several execution steps have been performed, as illustrated 
above. Second, the omnipresent opportunity to destroy information argues for 
delaying its gathering: if the a m  drops a block on a collection of carefully 
located objects, the location effort is largely wasted. Third, late vision may 
benefit from additional world-model information which may help decide where 
to look. 

The utility measure can express the tradeoffs between these two extremes. If, 
for example, toothpicks occur rarely in the world, a plan requiring a toothpick 
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may be. improved by locating the toothpick eaily. Similarly, if a particularly 
error-prone step may destroy information, late information gathering might be 
preferred. The elaboration process considers moving these vision operations to 
early positions in the plan; it uses the utility measure to decide whether the 
change is advantageous. 

3 .  H& to dedide where to look. The main techniques used to decide where to 
look were discussed in the example: a probability density function and utility 
function on objects in the world together specify where to look. A great deal of 
information, both a priori information about the world and the results of previous 
testsand actions, can be expressed in the probabilities. The particular formula- 
tion given in the example has the virtue that the choice of squares and examina- 
tion sequence has a very simple solution that requires no search. The operations 
research literature contains analyses of methods for searching for objects that also 
yield such closed-form solutions (Cozzolino, 1972). 

Bayesian Models. In the monkey-and-bananas example, results of tests are 
modeled with Bayes' rule: a posterior probability is computed as a function of the 
prior probability and some properties of the test. 

One problem with this technique is that it makes the often unwarranted as- 
sumption that the tests are independent. Strategy BP of Fig. 6 has a path that 
applies both TEST-FAR and TEST-NEAR. In this case, the independence 
assumption may be violated: if both tests are visual, they may be prone to similar 
errors in, say, dimly lit scenes, and hence have correlated results. In principle, 
this problem can be resolved by using different values for the performance of 
TEST-NEAR (i.e. p ,  and p,,) if the test follows a TEST-FAR on the same 
box, although quantifying the dependencies may be difficult. 

If the probability and utility models are extended to their most general form, in 
which all quantities are modeled as distributions rather than as discrete values, 
the expressive power of the model is enhanced. For example, Bayes' Ale for the 
LOOKAT operator, which modifies a distribution function on the position of a 
box, can record the uncertainty in the location of the box. This information may 
be useful to calculate probabilities of success of subsequent operators. For exam- 
ple,, the success of a GRASP operator in picking up a box with a mechanical arm 
depends ,on the precision with which the location of the box is known; the 
stability of a stack of boxes depends on the precision with which they are located, 
picked up, and stacked (Taylor, 1976). If the success of the plan is sufficiently 
impaired by imprecise location information, elaboration may find it beneficial to 
insert more precise tests that reduce the uncertainty. A simple representation of a 
distribution function (e.g., meari and standard deviation) may suffice for these 
calculations (Sproull, 1977). 

Modeling Execution Operators. The planning system views "execution" as 
calling upon a vision or action subsystem to perform a particular task, and then 
recording the results. However, it may happen that the outcome of the subsys- 
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tem's activity is not known precisely. For example, if the subsystem is to turn on 
lights, we may not know whether the lights work. Elaboration can decide be- 
tween two approaches by computing their utilities: either continuing obliviously, 
hoping that the operator worked correctly, or applying some test that is capable 
of determining the state of nature. If an operator were inserted by elaboration to 
turn on lights, the utility of the original plan without lights is known, and can be 
used to decide whether a test that verifies the strength of illumination increases 
the expected utility. 

The Role of the Symbolic Problem Solver 
The chief function of the symbolic problem solver is to provide plan outlines 

for elaboration and execution. Ideally, p1,anning occurs at various levels of detail: 
the initial planning is done in a highly abstracted model of the world, with an 
associated abstracted utility model so that estimates of the utility of the plan can 
be made, thus permitting comparison of competing goals. Further planning is 
accomplished using more detailed models. (This technique is drawn from current 
symbolic problem solvers, see Sacerdoti, 1974, 1975; Sproull, 1977.) 

Generating the initial plan outlines may require no search at all: a system may 
use so few outlines or the outlines may be so simple that they are stored as 
"constants" and simply retrieved for purposes of elaboration and execution. 
This technique is more attractive if plan outlines may contain variables (for 
example, the object BOX in our initial plan outline could be a variable); the 
symbolic problem solver instantiates an outline for each possible application. 
The outlines for the monkey-and-bananas problem, the wheelless student, and 
even for block-stacking t&ks (see Fig. 8) are of this simple nature. 

Find space 8 
clear the top 

I 

Look at block already there 

destination 

> Find a Pick up 8 

block place block 

Clear 

A 
or 

FIG. 8 A plan outline for block stacking. 

and 
empty 

or 



182 ' J .  A. FELDMAN AND R. F. SPROULL 

slipped off 

FIG. 9 A recovery strategy. 

The plan outlines delivered m.the elaboration process require additional sym- 
bolic information. Some is "state" information that is used to match precondi- 
tions of various elaborations (e.g., TEST-NEAR can be inserted only when the 
monkey and box are at the same location). Some is "recovery" information, 
specifying how a recovery from a particular error may be accomplished. We have 
already demonstrated the simplest form of this: on failure, choose another top- 
level alternative. More complicated error recoveries try to make a fix-up and then 
join the original plan again. This procedure changes the decision tree into a 
graph, and permits a somewhat more efficient search; joining an existing plan 
saves having to generate a fresh one. The problem solver can generate, for each 
outcome of an operator, one or more reasonable failure-recovery approaches. 
Then the elaboration process will calculate which of the approaches is best (see 
Fig. 9). 

Elaborating 

The elaboration process, which explores improvements to plan outlines using 
the utility function as a measure of progress, includes the following operations: 

1. Fixing failures. Pathsin the plan outline that end in failure are expanded to 
recover. Often, this involves pursuing another top-level alternative plan. In this 
case, an estimate of the utility of fixing up the failure is the current utility 
assessment of the top-level alternative. This is,'of course, not completely cor- 
rect, because the state of the world used to compute the top-level utility is not the 
same as that after a failure. For example, in the monkey-and-bananas problem, 
failure F3 (Fig. 6) leaves the monkey under the bananas, and the ruins of a 
cardboard box under the monkey. Later, if the search for good strategies indi- 
cates effort should be devoted to this plan, the failure elaboration may be im- 
proved from an estimate to an explicit plan. 

2. Inserting steps. The insertion of tests has already been demonstrated; the 
location of such insertions is governed by preionditions on the test and state 
information provided in the plan outline. The elaboration process only considers 
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inserting tests that dill affect the outcome of subsequent steps, thatk ,  tests that 
modify a parameter used to calculate the cost or outcome probabilities of a 
subsequent step. Determining how to insert tests that change the basic plan 
outline by changing the state of the world (e.g.,. tests that require the monkey to 
make additional moves for a better view) is very difficult. 

3. Changing operators. The model may provide several operators that ac- 
complish the same operation (from the standpoint of the symbolic model) but 
with different costs, or different reliabilities, etc. Thus we might have two 
operators: WALKTO and WALKTO-AVOIDING-OBSTACLES. The choice 
of operator (or subgraph of the plan outline) is controlled by utility appraisals. 

4. Moving operators. If a plan outline is a sequential union of several outlines 
(e.g., stacking two blocks, the QA4 "buy groceries and mail a letter" problem 
(Rulifson, Derksen, & Waldinger, 1972);or certain assembly problems (Taylor, 
1976)) it may be advantageous to reorder some of the steps. A simple case, the 
grouping of vision operations, was discussed above. In general, however, this is 
a very hard problem. The decision-theory techniques provide a useful way to 
decide if progress is being made, but they do not obviate a considerable amount 
of symbolic reasoning to decide whether the plan outline remains legal. 

The elaboration process has a strong parallel with trial evaluation: a plan 
modification is tentatively made, the utility of the new plan is computed, and the 
modification is saved if the utility rises. Thus a test will be inserted if its "value 
of information" is greater than its cost because the' recalculation of the utility 
automatically incorporates both of these influences. 

The elaboration process needs heuristics in order to keep the search reasonably 
efficient. The monkey-and-bananas example shows such an effect: the vision 
planning uses an estimate of the utility of actually using a box; the execution 
planning uses an estimate of the utility of locating and using a box that is 
currently unavailable. Figure 10 shows such a situation schematically: the utility I ,! = a;lerna; ), > ,( 

U = ... 

WalkTo(6) Lookat( ) 

PushTo 
"box .. I 

I 
I 
I u ... 

I box .. 

- / \I' 
Ue 

Udb 'find and use 
another box 

FIG. 10 Estimating a recovery utility. 
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of the best vision plan is used as an estimate of the utility of a recovery strategy. 
that uses an as yet to be located alternative box; the vision calculation uses an 
unelaborated utility of using a box (in conjunction with any that alfeady exist) 
should it be found. Thus both the vision and action planning activities each make 
use of the other's approximate utilities. 

Looking, Thinking, Acting 

The allocation of effort among the various activities of the system, looking, 
planning, and acting, can be-thought of as a scheduler, allocating resources to the 
task of highest priority. Priority is, of course, determined by a utility measure. 
This approach has several implications for the design of the system. 

First, planning is incremental. After a vision or action step, the results are 
recorded, perhaps causing changes in the utility or probability assignments of 
pending plans, and planning is continued. Since every alternative plan is in some 
sense "active" (i.e., the planning is complete to some level of detail, at-least 
enough to estimate,a utility to compare with other plans), each outcome can 
cause the planner to "reexamine the alternatives," and perhaps adopt an entirely 
different strategy. The vision routines may also take advantage of the incremen- 
tal organization, using latest utility estimates of objects needed to plan a vision 
strategy. 

' 

Second, the formulation helps prevent needless detailed advance planning. 
Some elaborations consume planning effort, although their contribution to in- 
creasing plan utility is slight; the effort is weighted by the probability of reaching 
a particular part of the tree. As execution progresses, however, some of these 
alternatives will vanish (paths not taken) and some utilities will increase, thus 
making detailed planning more attractive. The planning horizon at any level of 
abstraction thus precedes the execution in a controlled fashion. This property can 
be exploited to delay certain specific planning activities. An example from robot 
block stacking is the freespace problem: if a free spot is needed in which to place 
an object temporarily, it is. advantageous to delay assigning the location until 
absolutely necessary; it may be easy to examine available alternatives at the time 
the space is needed. 

Our simple formulation of the utility of planning can undoubtedly be consider- 
ably improved. Ideally, various intuitive measures of planning progress, such as 
the number of alternative branches remaining to be explored, or estimates of 
what clever but costly planning tricks may accomplish, could be included in the 
utility measure. This measure should provide ample rewards for carefully asses- 
sing the economics of planning. 

7. THE PARADIGM 

This paper advances the view that a combination of decision-theoretic and 
symbolic artificial inteuigence paradigms offers advantages not available to 
either individually. This section explores this claim. 
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The Two Fields 

Some readers will have already objected that our suggestions do not increase 
the range of problems solvable by decision theory or symbolic processing, that 
each is a powerful and complete paradigm, and that our remarks bear on effi- 
ciency considerations alone. The pure symbolic processor claims that he can 
achieve the effects we describe by dividing numeric ranges into a small number 
of "symbolic values" (e.g., temperature into COLD, COOL, WARM and 
HOT) that suffice for a given problem. Information about tradeoffs can be 
encoded as a set of symbolic preferences: (FED and WALKED-A-LONG- 
DISTANCE) is preferred to ((not FED) and WALKED-A-SHOR T- 
DISTANCE). Or he will assess tradeoffs numerically by instantiating theorems 
of number theory, analysis, and algebra. This gives rise to crude and awkward 
models in cases where a small amount of numerical processing is more natural 
and accurate. 

The pure mathematical programmer, on the other hand, will mathematize all 
constraints or move complexity into value or reward functions. He will formulate 
any search as a shortest path problem with appropriate arc weights and propose 
dynamic programming to calculate a solution. The result is often a huge state 
space for very simple problems, making numerical solution simply infeasible. 

Practitioners of either field adopt more moderate approaches: the A1 designer 
finds many problems suited to partially numerical approaches. Similarly, the 

> decision theorist engages in a substantial amount of symbolic reasoning to formu- 
late his model and to apply it intelligently to the situation; he may also use 
"heuristic" solution techniques on large problems. A human analyst will per- 
form the reasoning required to build a decision tree intelligently, one that repre- 
sents sensible plans. From the point of view of AI, this construction process is 
itself an endeavor of interest. 

From the point of view of decision theory, our formulation aims to permit a 
computer program to emulate a good decision analyst. Such an analyst combines 
formulating plans and searching decision trees to amve at a solution. A good 
analyst will monitor the implementation of the decisions, keeping abreast of 
exogenous changes in the utilities on which his solution was based, formulating 
additional plans, etc. Our technique attempts to emulate this activity. This is in 
contrast to conventional computer programs used to search one static tree exhaus- 
tively. 

From the point of view of AI, the advantage of decision theory is the ability to 
find solutions that are "optimal" in some model. Although the approach requires 
a certain amount of search to find solutions, several powerful methods are avail- 
able to limit the search. 

1. The symbolic problem solver constrains the search later undertaken to 
perfect a strategy. The elaboration search does not try strategies involving many 
combinations of many operators, but is limited to those strategies that include 
certain key steps specified by the problem solver. The basic recovery strategies, 
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that is, the instructions for plan elaboration in case of failure, are also provided 
. by the symbolic problem solver. Information attached to the plan outline is used 

to guide plan elaboration. For example, tests which have certain preconditions 
(e.g., that the monkey is "at" a box) are considered only at points in the plan 
outline that meet the conditions. A rough plan generated in simplified, abstract 
space, can be used to constrain the more careful planning (Sacerdoti, 1974, 
1975). These are examples of basic search-limiting methods of A1 not practiced 
in decision analysis programs. 

2. A number of decision-theoretic techniques limit search. Branch-and-bound 
methods limit search based on bounds derived from the utility models. In addi- 
tion, one can prove that the failure F, in Fig. 6 should not include paths that 
persist in using the same box (i.e., paths that disregard the outcome of the test): 
every such strategy is dominated by one that simply does not perform the test at 
all. Such "utility theorems" limit search. 

Another example of search limiting occurs when the plan outline specifies a 
loop. Any paths that involve loops continue to incur increased costs as they are 
expanded, but the ultimate utility is fixed. The loop thus expends effort without 
approaching the goal; such paths will be cut off by the branch-and-bound al- 
gorithm. 

3. Domain-independent heuristics can be applied to limit search. One such 
heuristic is to explore paths of high probability first, and perhaps be willing to 
bound pessimistically those paths of low probability. Although pure decision 
theory looks dimly on this technique because even paths of low probability may 
have unbounded utilities, in many cases we can meaningfully assign bounds to 
the utilities. 

Certain of the recovery mechanisms, for example, using another top-level 
alternative, are domain independent, as is the method of approximating the utility 
of such an alternative plan. 

4. Domain-dependent heuristics can limit search. Although these techniques 
may require a certain amount of reprogramming for each new domain, they are 
probably far more powerful than domain-independent methods. The current A1 
trend toward knowledge-based systems (Bobrow & Collins, 1975; Fikes, 1976; 
Nilsson, 1974) is due in part to benefits of distributing domain knowledge 
throughout systems. Such techniques are equally applicable in our framework. 

Search-limiting heuristics are not without drawback-the resulting search may 
not guarantee finding the optimal solution, that is, it is not admissible. However, 
the utility measure still allows us to extract the best plan among those developed 
in the search. 

The Combination 

What the two fields of decision theory and artificial intelligence offer is a 
collection of techniques that can be applied judiciously to solve problems. There 
are cases when applying decision theory is difficult or adds little to A1 
techniques: 



DECISION THEORY AND ARTIFICIAL INTELLIGENCE 187 

Insign@cant costs. The benefit of optimal planning may simply be too low if 
the costs of the planning and execution are themselves insignificant or if the 
planning costs greatly exceed the execution costs. 

Identical values. A problem may give rise to solutions of identical preference. 
A theorem-proving program may not be at all concerned with finding the 
shortest proof or with the expense of the search. A program that attempts to 
"understand" a paragraph of natural language in order to answer questions about 
it is likewise not concerned with optimization but with capturing a conceptual 
structure. In these cases, the utility function on outcomes is nearly constant, and 
gives no information to the search. 

Both of these examples are characterized by  t h e  intuition that the domain is 
inherently symbolic: the understwding problem is to build a conceptual structure 
that is communicated as a string of words; the theorem-proving task, even as 
practiced by humans, is primarily symbolic manipulation. There are notions of 
"best" solutions in both cases, but they are second-order considerations. 

Partial plans. Classical decision theory deals only with complete plans, and 
cannot cope with extremely large search problems in which it is impractical to 
enumerate all plans (e.g., chess, with 10160 nodes). Some A1 programs deal with 
this problem by using a heuristic estimate of the value of a partial plan to 
approximate the value of a complete plan (Newell, Shaw, & Simon, 1958). 

The heuristic estimate is often "backed up" through several steps of the partial 
plan in order to calculate the utility of the entire plan. This technique reduces 
somewhat the sensitivity of the overall utility calculation to errors in the heuristic 
estimate. In spite of this reduction, errors in the utility are a major concern (Pohl. 
1973). It is sometimes possible for a program to "learn" which estimates give 
rise to the smallest errors (Samuel, 1967). 

Modeling difficulties. It may be.very difficult to construct a utility and proba- 
bility model that applies to the problem. Although the central theorem of deci- 
sion theory shows that any choice of a "best" plan is an implied assessment of 
utilities and probabilities, it still may be difficult to cast the model in numerical 
terms. 

A particularly painful aspect of this problem is presented by Bayes' rule: if we 
use the rule to calculate the probability distribution resulting from a sequence of 
tests, a potentially huge number of conditional pro'babilities (or probability dis- 
tributions) is required. This difficulty, coupled with that of extracting probability 
information from humans, has led to several alternative "rules of inference" for 
computing likelihood information based on test outcomes (e.g., Shortliffe, 
1974). This is an important current research topic. 

But there are also ways in which decision theory adds considerable power: 
Convenient representation. Utility and probability models are often conve- 

nient ways of representing parameters of a problem; they thereby ease parameter 
modification by a designer or by a user with a slightly different problem. For 
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example, if a vision operator is modified to use a faster algorithm and therefore 
less computer time, a small modification to the utility model will suffice to alter 
the performance of an entire vision system correctly. It would be less obvious 
how to modify a set of symbolic heuristics that govems the application of the 
operator. 

A simple utility function may express the tradeoffs among the various re- 
sources the system consumes (money, elapsed time, etc.). The information that 
governs the tradeoffs the system actually makes is thus'localized and easily 
modifiable. Some such modifications can be made by the system itself in reaction 
to complaints about its behavior; the changes could require only simple numeri- 
cal calculations to compute new parameters for the utility model. It is less 
obvious how a program should itself ' 'learn' ' heuristics. 

Finally, because decision theory is continually being applied to real-world 
problems, new models are built, refined, and used. For example, efforts are 
underway to provide doctors with decision-theory models to help plan the diag- 
nosis and treatment of various diseases (Ginsberg, 1969; ~ a u k e r  & Kassirer, 
1975). Computer aids to such decision making can take advantage of the models. 

Ubiquity ofplanning. Such models are not limited to application in traditional 
" AI" domains. For example, an optimizing compiler embarks upon substantial 
symbolic reasoning to plan efficient object code for a program; sophisticated 
optimizers measure or estimate how often a section of code is executed and use 
this as an estimate of the utility of an optimization. An extended utility structure 
would permit trading off different forms of optimization and including the user's 
utility function. Automatic programming, and. in particular automatic coding 
(Low, 1974), seem to involve the same kinds of planning and elaboration 
mechanisms presented here. 

Optimal planning. -A decision-theoretic model of a planning process itself can 
be used to make planning decisions and thus to control allocation of effort to 
planning' tasks. Many A1 programs such as planners, problem solvers, parsers, 
and "understanders" require such guidance in the application of available 
methods: Is it more important to plan further ahead or to investigate detail of the 
current plan (Sacerdoti, 1974)? How far should consequences of a situation be 
investigated (Rieger, 1975)? Increasingly, this problem becomes one of control- 
ling a number of processes which are "triggered", by -.various changes in the 
world model, and which are responsible for exploring consequences of the 
change (Bobrow & Winograd, 1976). If two alternative parsings of a sentence 
appear similar in a crude analysis, should one be examined in detail, or should 
both be explored uniformly (Paxton & Robinson, 1973)? How are alternative 
hypotheses pqsued (Woods, 1974)? 

Even if the plans themselves have constant utility, optimal planning is useful. 
For example, in a theorem prover, we are given a set of clauses and must decide 
which of several resolutions to make; if we can calculate the cost of planning a 
solution from a given set of clauses, we choose the resolution which gives rise to 
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the lowest planning cost. Thus although the space of outcome utilities is con* 
stant, the utilities of various alternative planning approaches are not. This second 
space has been important to the development of search programs; it corresponds, 
for example, to the evaluation functions in game-playing programs. 

When the costs, uncertainties, and outcomes of the planning process itself are 
considered in controlling a planning and execution system, the system does 
"optimal planning." Although the plans generated may not be optimal, the 
entire process, including planning, is optimal. This suggests an extended notion 
of admissibility that includes consideration of planning costs. 

Detection problems. A1 has embraced a number of problems that have sig- 
nificant detection components: speech understanding and machine vision are the 
most obvious examples. The problems of efficient detection, and especially of 
uncertainty in the results, are at the heart of decision theory. In an AI setting, the 
knowledge gained from detection operations must be incorporated into higher- 
level reasoning that has significant symbolic components. It is perhaps in these 
problems that the approach we propose is most advantageous, for it unifies 
inherently numerical computation (detection) with symbolic reasoning (under- 
standing). Indeed, it is these areas that gave rise to the approach and saw early 
applications (Bolles, 1976; Garvey & Tenenbaum, 1974; Tenenbaum, 1973; 
Yakimovsky & Feldman, 1974). 

The fields of A1 and decision theory clearly have much to offer each other; 
each provides insights and techniques for solutions to information-processing 
problems. Researchers in each discipline should learn from the other. 
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APPENDIX: CLOSED FORMS, LEARNING, AND SENSITIVITY ANALYSIS 

If a planner is repeatedly given similar problems to solve, much of the search- 
ing and elaboration performed each time is wasteful. Ideally, a strategy could he 
labeled with a set of conditions under which it is optimal; the optimal strategy can 
be later retrieved by examining the necessary conditions. Such conditions might 
take the form of rules. For example, a decision rule for the monkey-and-bananas 
problem with one box is: 

if dm < 50 then (if db < 3 then A a  else A@ ) 
else (if db < 8 -dm/10 then A a  else B a  ) 

The variables in the rule are dm, the distance from the monkey to the box, and d,,, 
the distance from the box to the bananas; all other parameters of the problem are 
assumed fixed to values of Table 3. The rule does not attempt to compare the 
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eating strategies to plans for pursuing other goals. Rather, it is a convenient way 
to retrieve a good strategy based on a small number of symbolic requirements 
(existence of bananas and box) and some parameters (Cs, ps, and ds). After 
retrieving the best eating strategy, its utility can be compared with that of other 
plans. 

Unfortunately, generating concise rules to cover a wide variety of situations is 
not a trivial task. We can, of course, always resort to planning and searching 
decision trees if a precomputed strategy is lacking. Furthennore, the results of 
each search could be stored for ready reference in the future. But a deeper 
problem makes this difficult: if small changes to any parameter result in different 
strategies, the number of rules could grow unreasonably large. 

We could try to partition the space of parameter values, associating amle  with 
each cell of the partition. The problem then is to find an appropriate partition. 
One technique for developing a partition might be called "learning." Initially, a 
coarse partition is chosen, and strategies or rules are associated with each cell as 
needed. In addition, a number is kept with each cell that records the average 
utility actually achieved by the strategy in the past. If this number falls substan- 
tially below the expected utility ofthe strategy, we suspect that the strategy is not 
valid throughout the cell, and refine the partition. Such a scheme is used in 
Yakimovsky and Feldman (1974) under manual control. 

~ltematively, sensitivity analysis can help devise a partition. Such analysis, if 
it can be carried out, can answer questions such as "Over what range of parame- 
ter values is a strategy rule such as the example valid?" Insignificant changes in 
the utility, to which the planner is indifferent, need not cause repartitioning. In 
simple cases when the symbolic expressions for utility calculations are available, 
partial differentiation can help determine the effect of parameter changes on the 
utility. 

Sensitivity analysis is useful to the planner even if we are not computing a 
partition. During elaboration, the usefulness of a test that measures a particular 
parameter is gauged by the change in utility as a result of a change in parameter 
value. Also, since many of the parameter values may be only approximate, or 
even subject to gross errors because of unreliable measurements of the state of 
nature, the sensitivity analysis can warn of gross changes in strategy within the 
range of parameter variation. 
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